Chemistry, Structure, and Molecular Dynamics of the Tetrahydroboratotetracarbonylmolybdate(1-) Anion, $\mathrm{Mo}(\mathrm{CO})_{4} \mathrm{BH}_{4}{ }^{-}$

Stephen W. Kirtley, ${ }^{\text {*1a }}$ Mark A. Andrews, ${ }^{1 b}$ Robert Bau,* ${ }^{\text {c }, 2}$ Gregory W. Grynkewich, ${ }^{\text {1d }}$ Tobin J. Marks, ${ }^{* 1 d, 3}$ Donald L. Tipton, ${ }^{1 s}$ and Bruce R. Whittlesey ${ }^{1 b}$
Contribution from the Departments of Chemistry. University of Southern California, Los Angeles. California 90007. Northwestern University. Evanston. Illinois 60201. and Smith College. Northampton. Massachusetts 01063. Received March 2. 1977

Abstract

The compound $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{~N}\right]\left[\mathrm{Mo}(\mathrm{CO})_{4} \mathrm{BH} \mathrm{H}_{4}\right]$ can be prepared in 25% yield by the reaction of $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{~N}\right]\left[\mathrm{Mo}(\mathrm{CO})_{5} 1\right]$ and $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{~N}\right]\left[\mathrm{BH}_{4}\right]$ in anhydrous tetrahydrofuran. Mechanistic studies show that iodide ion acts as a catalyst in the synthesis. X-ray diffraction studies reveal that the compound crystallizes in the space group $P \overline{1}(a=17.828$ (8) $\AA, b=9.714$ (4) \AA, $c=12.371(5) \AA, \alpha=101.77(1)^{\circ}, \beta=115.36(1)^{\circ}, \gamma=94.40(1)^{\circ}, V=1886.9 \AA^{3}, \rho_{\text {obsd }}=1.33 \mathrm{~g} \mathrm{~cm}^{-3}, \rho_{\text {calcd }}=1.34 \mathrm{~g} \mathrm{~cm}^{-3}$ for $Z=2$). Data were collected with Zr -filtered Mo K α radiation to a 2θ limit of 45°. Standard Patterson, Fourier, and leastsquares techniques resulted in final agreement factors: $R=8.3 \%, R_{w}=8.1 \%$ for 3208 reflections with $I>3 \sigma$. The tetrahydroborate ligand is attached to the metal via two Mo-H-B bridge bonds with $\mathrm{Mo}-\mathrm{H}_{\mathrm{b}}=2.02$ (8) \AA. The coordination about the central molybdenum atom is approximately octahedral, but two notable distortions occur in the equatorial plane: C(eq)-Mo$\mathrm{C}(\mathrm{eq})=84.5(5)^{\circ}$ and $\mathrm{H}_{\mathrm{b}}-\mathrm{Mo}-\mathrm{H}_{\mathrm{b}}=59(4)^{\circ}$. The geometry about the boron is virtually tetrahedral, with Mo-B=2.41 (2) \AA. The ligational analogy between η^{3}-allyl and BH_{4}^{-}is further strengthened by the results of this study. Boron-decoupled ${ }^{1} \mathrm{H}$ NMR spectra reveal that bridge-terminal hydrogen interchange occurs within the tetrahydroborate ligand with $\Delta G_{\mathrm{c}^{\ddagger}}=10.0$ $\pm 0.2 \mathrm{kcal} / \mathrm{mol}$. As revealed by ${ }^{13} \mathrm{C}$ NMR studies, this rearrangement process is not coupled to axial-equatorial CO exchange about the molybdenum coordination polyhedron; $\Delta G^{\ddagger} \geq 18.6 \mathrm{kcal} / \mathrm{mol}$ for this process. This result places significant restrictions on operational $\mathrm{BH}_{4}{ }^{-}$rearrangement mechanisms. These are discussed in the light of a permutational analysis of differentiable rearrangement modes in covalent metal tetrahydroborates.

The tetrahydroborate ion, BH_{4}^{-}, one of the more useful reagents in organic synthesis, ${ }^{4}$ has also been employed extensively in inorganic and organometallic chemistry as a hydridic reagent and as a ligand. In synthesis, $\mathrm{BH}_{4}{ }^{-}$has been used to reduce metal carbonyls to form cluster compounds containing bridging hydride ligands. ${ }^{5}$ Metal tetrahydroborates have also been used as catalysts $6,7 \mathrm{7a}$ and as reagents in metal hydride syntheses. ${ }^{8}$ A variety of metal complexes incorporating BH_{4}^{-} as a ligand ${ }^{7}$ exhibit interesting fluxional behavior ${ }^{77,9}$ as well as varying $\mathrm{BH}_{4}-$ bonding modes, ${ }^{7}$ i.e., bidentate (A) and tridentate (B).

A

B

We wish to describe here the synthesis of the new metal carbonyl tetrahydroborate, $\mathrm{Mo}(\mathrm{CO})_{4} \mathrm{BH}_{4}{ }^{-}$(I). This complex is the first reported example of a stable transition metal $\mathrm{BH}_{4}{ }^{-}$ complex in which the formal oxidation state of the metal is zero, and also the first in which the only other ligand type in the complex is carbonyl. ${ }^{7,10,11}$ Since these features provide an unusual opportunity to investigate certain important aspects of tetrahydroborate chemistry, bonding, and structural dynamics, we have undertaken a thorough study of the properties of this complex. We report here, besides chemical observations on the mechanism of $\mathrm{Mo}(\mathrm{CO})_{4} \mathrm{BH}_{4}-$ formation, the molecular structure as determined by x-ray diffraction and an ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR study of fluxional behavior.

Experimental Section

All operations were carried out in a prepurified nitrogen atmosphere using Schlenk techniques. Solvents were dried, deaerated, and stored under nitrogen over Linde 3A molecular sieves, with the exception of tetrahydrofuran (THF), which was distilled from calcium hydride or lithium aluminum hydride. Infrared spectra were recorded on a Perkin-Elmer Model 457 spectrophotometer and calibrated against polystyrene. Solution spectra were recorded in THF using CaF_{2} cells
with a $0.5-\mathrm{mm}$ spacer, and solid spectra were recorded using KBr disks. Room temperature ${ }^{1} \mathrm{H}$ NMR spectra were recorded on Varian A-60D and T-60 spectrometers in acetone- d_{6}. Variable temperature, boron-decoupled 'H NMR studies were performed in tetrahydrofu-ran- d_{8} with a Perkin-Elmer R20-B spectrometer having an R-209PA heteronuclear double resonance power amplifier, a Schomandl ND30M frequency synthesizer, and a Calrad Model $65-287$ rf power meter. Temperatures were calibrated with a Wilmad NMR probe thermometer. Variable temperature ${ }^{13} \mathrm{C}$ NMR studies employed a Varian CFT-20 Fourier transform spectrometer with 16 K memory and single sideband filter. With small amounts (ca. 1:100) of the relaxation reagent $\mathrm{Cr}(\mathrm{acac})_{3}$ added, typical pulse delay times were maintained in excess of 1.5 s . Conductivities were measured on a YSl-31 conductivity bridge using acetonitrile as the solvent. Analyses were performed by the Schwarzkopf Microanalytic Laboratory, Woodside, N.Y., and PCR Inc., Gainesville, Fla. Melting points were determined in sealed capillaries and are uncorrected. Metal carbonyls were purchased from Pressure Chemical Co . and used without further purification. The BH_{3}.THF was purchased from Aldrich Chemical Co., Inc. [PPN][Cl] was prepared using the literature method. ${ }^{12}$

Preparation of [PPN][I]. [PPN][Cl] ${ }^{12}(38.0 \mathrm{~g}, 66.2 \mathrm{mmol})$ was dissolved in a minimum amount of a 50% acetone/ 50% ethanol solution, and to this was added $\mathrm{NaI}(11.4 \mathrm{~g}, 76.1 \mathrm{mmol})$ dissolved in a minimum amount of 50% acetone $/ 50 \%$ ethanol. The mixture was allowed to stand and the sodium chloride filtered off. The filtrate was poured into 2 L of deionized water to precipitate [PPN][I]. The product was separated by filtration, washed, dried, and slurried with a small amount of diethyl ether for several days. The product was again filtered and dried to give [PPN][I] (36.0 g .54 .1 mmol) (82%), mp 244-246 ${ }^{\circ}$.

Preparation of $[P P N]\left[\mathrm{BH}_{4}\right] . \mathrm{NaBH}_{4}(4.0 \mathrm{~g}, 106 \mathrm{mmol})$ was dissolved in 120 mL of absolute etha nol and added to [PPN][Cl] (10.3 $\mathrm{g}, 17.9 \mathrm{mmol}$) dissolved in 40 mL of absolute ethanol. A small amount of gas evolution was observed at this time. After filtration to remove sodium chloride the solution was poured into 1 L of ice water and the resulting $[\mathrm{PPN}]\left[\mathrm{BH}_{4}\right]$ precipitate removed by filtration, washed, slurried with ether overnight, refiltered, and dried to give [PPN][BH_{4}] $(8.0 \mathrm{~g}, 14.5 \mathrm{mmol})(81 \%)$. The infrared spectrum (Nujol mull) exhibits B-H stretching transitions at $2280(\mathrm{~ms}, \mathrm{sh}), 2220(\mathrm{vs})$, and 2130 $\mathrm{cm}^{-1}(\mathrm{~m})$.

Preparation of [PPN][Mo(CO)sI]. Using a modification of the procedure of King, ${ }^{13} \mathrm{Mo}(\mathrm{CO})_{6}(2.02 \mathrm{~g}, 7.66 \mathrm{mmol})$ and $[\mathrm{PPN}][\mathrm{I}]$
($5.12 \mathrm{~g}, 7.60 \mathrm{mmol}$) were added to 100 mL of THF and the solution refluxed for $2-3 \mathrm{~h}$ to produce a clear, bright yellow solution. The solvent was removed with a water aspirator to leave the yellow-green powder [PPN] $\left[\mathrm{Mo}(\mathrm{CO})_{5} \mathrm{I}\right]$ in virtually quantitative yield. Solution IR of the carbonyl region: $2050(\mathrm{w}), 1921$ (vs), $1852 \mathrm{~cm}^{-1}$ (s).
Preparation of $\left[\mathrm{PPN}\left[\mathrm{Mo}(\mathrm{CO})_{4} \mathbf{B H}_{4}\right]\right.$ (I). [PPN] [$\left.\mathrm{Mo}(\mathrm{CO})_{5} \mathrm{I}\right]$ (1.10 $\mathrm{g}, 1.22 \mathrm{mmol}$) was refluxed in 50 mL of THF with a molar excess of [PPN] $\left[\mathrm{BH}_{4}\right]$ ($0.83 \mathrm{~g}, 1.50 \mathrm{mmol}$). IR spectra at intermediate times showed the presence of $\mathrm{Mo}(\mathrm{CO})_{5} \mathrm{I}^{-}, \mathrm{HMO}_{2}(\mathrm{CO})_{10^{-}, 14}$ and $\mathrm{Mo}(\mathrm{CO})_{4} \mathrm{BH}_{4}^{-}$. After 16 h , the solution was a clear orange-yellow with an orange solid on the sides of the reaction vessel. The settled solution was transferred away from the solids via syringe and the solvent evaporated in vacuo to leave an orange tar which was redissolved in diethyl ether to give a clear, bright yellow solution and an insoluble brown tar. The solution was filtered, the volume reduced in vacuo, and the flask placed in the freezer overnight to form 0.23 g of yellow-orange crystals of $[\mathrm{PPN}]\left[\mathrm{Mo}(\mathrm{CO})_{4} \mathrm{BH}_{4}\right]$ (I) (25%): mp $100-107^{\circ} \mathrm{C}$; solution IR of the $2500-1800-\mathrm{cm}^{-1}$ region 2395 (sh), 2376 (m), 2340 (sh), 2282 (w), 2018 (m), 1925 (w, sh, br), 1897 (vs), 1877 (s), $1835 \mathrm{~cm}^{-1}$ (s); IR (KBr) of the $2600-1000-\mathrm{cm}^{-1}$ region excluding PPN ${ }^{+}$absorptions 2390 (sh), 2375 (m), 2330 (sh), 2280 (w), 2020 (m), 1975 (m, sh, br), 1900 (vs), 1878 (s), 1810 (s), 1395 $(\mathrm{m}, \mathrm{br}), 1145 \mathrm{~cm}^{-1}(\mathrm{~m})$; conductivity $\left[\mathrm{c} \times 10^{3}(\mathrm{M})\left(\mathrm{ohm}^{-1}\right), \Lambda_{\mathrm{e}}\left(\mathrm{cm}^{2}\right.\right.$ equiv ${ }^{-1} \mathrm{ohm}^{-1}$)] $5.90,110.2 ; 2.95,116.9 ; 1.47,122.4 ; 0.74,125.7$; $0.37,132.4 ; 0.18,136.1\left(\Lambda_{0}=137, A=400\right)$ (values indicative of a 1:1 electrolyte). The compound is soluble in THF and acetonitrile, slightly soluble in diethyl ether, and insoluble in nonpolar organic solvents, and reacts with acetone. Solutions and the solid are extremely air sensitive, but the crystals are stable indefinitely under nitrogen. Anal. Calcd for $\mathrm{C}_{40} \mathrm{H}_{34} \mathrm{BMONO}_{4} \mathrm{P}_{2}: \mathrm{C}, 63.10 ; \mathrm{H}, 4.50 ; \mathrm{B}, 1.42 ; \mathrm{Mo}$, 12.60 ; N, $1.84 ;$ P, 8.14. Found: C, 62.57 ; H, $4.70 ; \mathrm{B}, 1.56$; Mo, 11.55 ; N, 2.28; P, 8.04 .
Reaction of $\mathrm{Mo}(\mathrm{CO})_{6}, \mathrm{BH}_{4}^{-}$and I^{-}(Catalytic). This and the following reactions pertain to our analysis of the mode of formation of $\left[\mathrm{Mo}(\mathrm{CO})_{4} \mathrm{BH}_{4}\right]^{-}$(see Discussion section).
$\mathrm{NaBH}_{4}(0.44 \mathrm{~g}, 11.6 \mathrm{mmol})$ and $\left[\mathrm{Bu}_{4} \mathrm{~N}\right][\mathrm{I}](0.10 \mathrm{~g}, 0.28 \mathrm{mmol})$ were added to $\mathrm{Mo}(\mathrm{CO})_{6}(1.51 \mathrm{~g}, 5.72 \mathrm{mmol})$ dissolved in 60 mL of THF. The solution was refluxed and solution IR spectra were of the carbonyl region recorded periodically. Over a period of 80 h , the relative percentages of $\mathrm{HMo}_{2}(\mathrm{CO})_{10^{-}}$and $\mathrm{Mo}(\mathrm{CO})_{4} \mathrm{BH}_{4}{ }^{-}$changed from ca. 70/30 at 3 h to $10 / 90$ at 80 h . At no time were any other carbonyl region absorptions noted except those of $\mathrm{Mo}(\mathrm{CO})_{6}$.
Reaction of $\mathrm{HMo}_{2}(\mathrm{CO})_{10}{ }^{-}$and I^{-}(Molar), $\left[\mathrm{Et}_{4} \mathrm{~N}\right]\left[\mathrm{HMo}_{2}(\mathrm{CO})_{10}\right]$ ($0.35 \mathrm{~g}, 0.58 \mathrm{mmol}$), prepared using published methods, ${ }^{14}$ was added to $\mathrm{Nal}(0.09 \mathrm{~g}, 0.59 \mathrm{mmol})$ dissolved in 25 mL of THF. After refluxing for 24 h , the solution 1 R showed only $\mathrm{Mo}(\mathrm{CO})_{5} \mathrm{I}^{-}$, but the flask also contained a large amount of a brown-purple precipitate which, when dissolved in acetone, gave an extremely air-sensitive dark red solution.
Reaction of $\mathrm{HMo}_{2}(\mathrm{CO})_{10^{-}}, \mathrm{BH}_{4}^{-}$, and I^{-}(Catalytic). [$\left.\mathrm{Et}_{4} \mathrm{~N}\right]\left[\mathrm{HMo}_{2}(\mathrm{CO})_{10}\right](0.27 \mathrm{~g} .0 .45 \mathrm{mmol})$ was dissolved in 60 mL of THF and to the solution was added [PPN][BH $\left.{ }_{4}\right](0.30 \mathrm{~g}, 0.54$ $\mathrm{mmol})$ and [PPN][I] ($0.03 \mathrm{~g}, 0.047 \mathrm{mmol}$). The mixture was then refluxed and the carbonyl region IR monitored for 48 h . After 3 h , the solution contained $\mathrm{HMO}_{2}(\mathrm{CO})_{10^{-}}$(II) and a small amount of $\mathrm{Mo}(\mathrm{CO})_{5} \mathrm{I}^{-}$. After 24 h , all of II had reacted producing small amounts of $\mathrm{Mo}(\mathrm{CO})_{5} \mathrm{I}^{-}$, only a trace of 1 , and large amounts of a red, airsensitive precipitate.
Reaction of $\mathrm{HMo}_{2}\left(\mathrm{CO}_{10^{-}}, \mathbf{I}^{-}\right.$, and BH_{3},THF (Molar). To $[\mathrm{PPN}]\left[\mathrm{HMO}_{2}(\mathrm{CO})_{10}\right](0.45 \mathrm{~g}, 0.45 \mathrm{mmol})$ dissolved in 50 mL of THF was added [PPN][I] ($0.30 \mathrm{~g}, 0.45 \mathrm{mmol}$) and BH_{3}.THF ($2 \mathrm{~mL}, 1 \mathrm{M}$, 2 mmol). The solution was refluxed for 16 h , at which time the IR showed I and $\mathrm{Mo}(\mathrm{CO})_{5} \mathrm{I}^{-}$.
Reaction of $\mathrm{HMO}_{2}(\mathbf{C O})_{10}, \mathrm{I}^{-}$, and BH_{3}, THF (Excess). $\left[\mathrm{Et}_{4} \mathrm{~N}\right]\left[\mathrm{HMo}_{2}(\mathrm{CO})_{10}\right](0.42 \mathrm{~g}, 0.70 \mathrm{mmol}),[\mathrm{PPN}][\mathrm{I}](0.48 \mathrm{~g}, 0.72$ $\mathrm{mmol})$, and $\mathrm{BH}_{3} \cdot \mathrm{THF}(6 \mathrm{~mL}, 1 \mathrm{M}, 6 \mathrm{mmol})$ were dissolved in 50 mL of THF and the solution refluxed for 16 h . [PPN][Cl] $(0.60 \mathrm{~g}, 1.04$ $\mathrm{mmol})$ was added and the solution stirred briefly. After being allowed to settle, the solution was transferred via syringe to another flask, and the solvent removed with a water aspirator to leave a yellow tar. The tar was extracted with 45 mL of diethyl ether to give a pale yellow solution which was filtered and placed in the freezer overnight to produce light yellow crystals of [PPN] $\left[\mathrm{Mo}(\mathrm{CO})_{4} \mathrm{~B}_{3} \mathrm{H}_{8}\right.$]: ${ }^{10}$ solution 1R of the carbonyl region 2026 (w), 1908 (vs), 1881 (m). $1849 \mathrm{~cm}^{-1}$ (s): preliminary crystal data $V=1980 \AA^{3}, \rho_{\text {obsd }}=1.36(1) \mathrm{g} \mathrm{cm}^{-3}$ (flotation in carbon tetrachloride/cyclohexane), $\rho_{\text {calcd }}=1.32 \mathrm{~g} \mathrm{~cm}^{-3}$

Table I. Crystal Data for [PPN$]\left[\mathrm{Mo}(\mathrm{CO})_{4} \mathrm{BH}_{4}\right]$

$a=17.828$ (9) \AA	Triclinic unit cell
$b=9.714$ (4) \AA	Space group $P \overline{1}$
$c=12.471(5) \AA$	$Z=2$
$\alpha=101.77(1)^{\circ}$	Mol wt 761.4
$\beta=115.36(1)^{\circ}$	
$\gamma=94.40(1)^{\circ}$	$\mu=4.40 \mathrm{~cm}^{-1}$ for Mo K α x-rays
$V=1886.9 \AA^{3}$	Crystal size $0.15 \times 0.25 \times 0.62 \mathrm{~mm}$
calcd $=1.34 \mathrm{~g} \mathrm{~cm}^{-3}$	Variation in transmission
$\rho_{\text {obsd }}=1.33(1) \mathrm{g} \mathrm{cm}^{-3 a}$	coefficient b 0.93-1.05

${ }^{a}$ Obtained by flotation in carbon tetrachloride/cyclohexane. ${ }^{b}$ Normalized to an average of unity.
for $Z=$ 2. Anal. Calcd for $\mathrm{C}_{40} \mathrm{H}_{38} \mathrm{~B}_{3} \mathrm{MoNO}_{4} \mathrm{P}_{2}: \mathrm{C}, 61.04 ; \mathrm{H}, 4.87$; N, 1.78. Found: C, $58.84 ; \mathrm{H}, 4.81 ;$ N, 1.70 .

Preparation of $[P P N]\left[\mathbf{M o}\left({ }^{13} \mathbf{C O}\right)_{n}\left(\mathrm{CO}_{4-n} \mathrm{BH}_{4}\right]\right.$. No exchange was observed by infrared spectroscopy when a solution of [PPN]$\left[\mathrm{Mo}(\mathrm{CO})_{4} \mathrm{BH}_{4}\right]$ in THF was stirred for 48 h under a ${ }^{13} \mathrm{CO}$ atmosphere. Therefore a catalytic carbon monoxide exchange procedure was employed. In a three-necked flask equipped with a gas inlet, stopper, and a serum cap over one joint, $1.0 \mathrm{~g}(3.8 \mathrm{mmol})$ of $\mathrm{Mo}(\mathrm{CO})_{6}$ was dissolved, under nitrogen, in 40 mL of $4: 1$ cyclohexane-THF. A small amount (ca. 5 mg) of $10 \% \mathrm{Pd}$ on charcoal was added to the reaction vessel, and then 80 mL of the atmosphere over the reaction mixture was removed through the serum cap via gas-tight syringe and 80 mL of $90 \%{ }^{13} \mathrm{CO}$ injected in its place. The reaction mixture was then stirred vigorously, and the progress of the enrichment was monitored by infrared spectroscopy. After equilibrium was reached (ca. 6 h), another 80 mL of atmosphere was removed and replaced by ${ }^{13} \mathrm{CO}$, and the reaction monitored as before. This procedure was repeated until the desired percent enrichment was achieved (ca. 15\%). Next, the $\operatorname{Pd}(C)$ was allowed to settle and the supernatant was carefully transferred via syringe into another reaction vessel, diluted with 75 mL of THF, and used in the reaction scheme outlined above to prepare $15 \%{ }^{13} \mathrm{CO}$ enriched [PPN$]\left[\mathrm{Mo}(\mathrm{CO})_{4} \mathrm{BH}_{4}\right.$].
Crystallographic Section. [PPN][$\mathrm{Mo}(\mathrm{CO})_{4} \mathrm{BH}_{4}$] crystallizes from diethyl ether as bright yellow parallelepipeds with well-formed faces. A specimen of dimensions $0.15 \times 0.25 \times 0.62 \mathrm{~mm}$ was mounted in a capillary tube along its long axis in an atmosphere of helium. Precession photographs indicated a triclinic crystal system. The unit cell parameters, obtained by measuring the setting angles of 27 reflections on a Nonius CAD-3 automated diffractometer, are given together with other relevant crystal data in Table 1.

One hemisphere of data was collected ${ }^{15}$ by the $\theta / 2 \theta$ scan technique with Zr_{r} filtered Mo $\mathrm{K} \alpha$ radiation up to a 2θ limit of 45°. A scan speed of $10^{\circ} / \mathrm{min}$ was used, with the scan range defined as $\Delta \theta=1.2+0.15$ $\tan \theta$. Each reflection was scanned between two and six times depending on its intensity. Background counts were taken at the beginning and end of each scan. Zirconium foil attenuators were automatically inserted to prevent the counting rate from exceeding 2500 counts $/ \mathrm{s}$. A takeoff angle of 4° was used and the upper and lower level discriminators of the pulse height analyzer were set to obtain a 90% window centered on the Mo K α peak. As a check on the stability of the diffractometer and the crystal, the ($\overline{700})$, (040), and ($00 \overline{6}$) reflections were measured at 50 reflection intervals during data collection. No significant variation in the monitor intensities was noted.
The standard deviation of each intensity reading was estimated using the expression ${ }^{16}$
$\sigma(I)=\left[(\text { peak }+ \text { background counts })+(0.04)^{2}(\text { net intensity })^{2}\right]^{1 / 2}$
Out of the total of 7110 reflections collected, ${ }^{15}$ there were 3208 independent reflections with intensities greater than 3σ; these were retained for the subsequent structure analysis. The intensities were further corrected for Lorentz, polarization, and absorption effects.

The coordinates of the molybdenum and phosphorus atoms were obtained from a Patterson map, and the other nonhydrogen atoms were readily located from two difference Fourier maps. ${ }^{17}$ After several cycles of least-squares refinement, in which the phenyl carbon atoms were assigned isotropic temperature factors and all other atoms were assigned anisotropic temperature factors, a difference Fourier revealed the tetrahydroborate hydrogen atoms. Calculated phenyl hydrogen
positions, generated from consideration of the planar phenyl geometry, were entered but not refined. The parameters were then blocked into two matrices: one with the scale factor, anion coordinates, and thermal parameters; the other with the cation coordinates and thermal parameters. Several cycles of least squares resulted in final agreement factors of $R=8.3 \%, R_{w}=8.1 \% .^{18}$

Results and Discussion

Synthesis and Properties. [PPN][Mo(CO) $\left.{ }_{4} \mathrm{BH}_{4}\right]$ can be prepared in reasonable yield via a straightforward metathesis reaction (eq 1).

$$
\begin{align*}
& {[\mathrm{PPN}]\left[\mathrm{Mo}(\mathrm{CO})_{5} \mathrm{I}\right]+[\mathrm{PPN}]\left[\mathrm{BH}_{4}\right]} \\
& \quad \xrightarrow{\text { THF }}[\mathrm{PPN}]\left[\mathrm{Mo}(\mathrm{CO})_{4} \mathrm{BH}_{4}\right]+[\mathrm{PPN}][\mathrm{I}]+\mathrm{CO} \tag{1}
\end{align*}
$$

I

The product is an air-sensitive, yellow-orange crystalline material.

Infrared spectra of I are identical in the solid state and in solution. The transitions associated with the tetrahydroborate functionality are in agreement with spectroscopic criteria ${ }^{7 a, 19}$ for a bidentate ligation geometry, C . In tetrahydrofuran solution, the symmetric and antisymmetric (A_{1} and B_{1} under $C_{2 v}$

C
symmetry) $B-H_{t}$ stretching absorptions are observed at 2376 (m) and $2395 \mathrm{~cm}^{-1}(\mathrm{~m})$; in a KBr disk the A_{1} bridge expansion mode is observed at $1395 \mathrm{~cm}^{-1}(\mathrm{~m})$, and the BH_{2} deformation mode (B_{2}) at $1145 \mathrm{~cm}^{-1}(\mathrm{~m})$. These values are in good agreement with those for other highly covalent bidentate transition metal tetrahydroborates. ${ }^{7 a}$ Because of the strong carbonyl stretching absorption in the $2000-1800-\mathrm{cm}^{-1}$ region, it is not possible to assign the A_{1} and $\mathrm{B}_{2} \nu \mathrm{~B}-\mathrm{H}_{\mathrm{b}}$ transitions with certainty. A shoulder at $1925 \mathrm{~cm}^{-1}$ may be one of the transitions. ${ }^{66}$ The four-band carbonyl stretching pattern is in good agreement with $C_{2 v}$ local symmetry about molybdenum: ${ }^{20}$ $2020(\mathrm{~m}), 1900(\mathrm{vs}), 1878(\mathrm{~s})$, and $1810 \mathrm{~cm}^{-1}$ (s).

The mechanism by which I arises was investigated because the $\mathrm{BH}_{4}{ }^{-}$-induced incorporation of borane fragments into a metal carbonyl had been observed only once before ${ }^{21}$ (usually a metal or metal hydride cluster is formed ${ }^{5}$) and because compounds such as I are attractive percursors for metal cluster synthesis. Furthermore, it was of interest to explore the role of I^{-}in reaction 1 since

$$
\begin{equation*}
\mathrm{Mo}(\mathrm{CO})_{6}+\mathrm{BH}_{4} \xrightarrow{\mathrm{THF}} \mathrm{HMo}_{2}(\mathrm{CO})_{10^{-1}} \tag{2}
\end{equation*}
$$

II

represents an efficient synthesis of the hydride-bridged complex II, ${ }^{14}$ and I is only detected in trace quantities. Several observations concerning eq 2 vis-à-vis eq 1 are noteworthy. First, infrared spectra reveal that II is produced during the course of reaction 1 , but is consumed as the reaction nears completion. Second, when reaction 1 is carried out in diethyl ether instead of THF, considerable quantities of II are produced and the yield of I falls. Third, when catalytic amounts of I^{-}are added in reaction 2 , the major product is I. A plausible scheme to explain these observations is shown in eq 3-7.

$$
\begin{equation*}
\mathrm{Mo}(\mathrm{CO})_{6}+\mathrm{Y} \xrightarrow{\text { slow }} \mathrm{Mo}(\mathrm{CO})_{5} \mathrm{Y}+\mathrm{CO} \tag{3}
\end{equation*}
$$

$$
\begin{align*}
& \mathrm{Mo}(\mathrm{CO})_{5} \mathrm{Y}+\mathrm{BH}_{4}-\stackrel{\text { fast }}{\rightleftharpoons} \mathrm{Mo}(\mathrm{CO})_{5} \mathrm{BH}_{4}^{-}+\mathrm{Y} \tag{4}\\
& \mathrm{Mo}(\mathrm{CO})_{5} \mathrm{BH}_{4}-\stackrel{\text { slow }}{\longrightarrow} \mathrm{Mo}(\mathrm{CO})_{4} \mathrm{BH}_{4}-(\mathrm{I})+\mathrm{CO} \tag{5}
\end{align*}
$$

$$
\begin{equation*}
\mathrm{Mo}(\mathrm{CO})_{5} \mathrm{BH}_{4}-\stackrel{\text { fast }}{\rightleftharpoons} \mathrm{HMo}(\mathrm{CO})_{5}-+\left[\mathrm{BH}_{3}\right] \tag{6}
\end{equation*}
$$

$$
\begin{aligned}
& \mathrm{HMo}(\mathrm{CO})_{5}{ }^{-}+\mathrm{Mo}(\mathrm{CO})_{5} \mathrm{Y} \\
& \stackrel{\text { fast }}{\rightleftharpoons} \\
& \stackrel{\mathrm{HMo}}{2}(\mathrm{CO})_{10^{-}}(\mathrm{II})+\mathrm{Y}
\end{aligned}
$$

$$
\mathrm{Y}=\mathrm{THF} \text { or } \mathrm{I}^{-}
$$

Reaction 3 is well known for the formation of $\mathrm{Mo}(\mathrm{CO})_{5} \mathrm{THF}^{22}$ or $\mathrm{Mo}(\mathrm{CO})_{5} \mathrm{I}^{-},{ }^{13}$ When $\mathrm{Y}=\mathrm{I}^{-}$, reaction 4 is a halide displacement by $\mathrm{BH}_{4}{ }^{-}$for which there is ample precedent, ${ }^{7}$ Presumably the pentacarbonyl tetrahydroborate is short lived (it could not be detected spectroscopically) and either decarbonylates to produce I (eq 5) or enters into reaction 6 . The loss of CO in step 5 is essentially irreversible as evidenced by the ${ }^{13} \mathrm{CO}$ exchange experiments (see Experimental Section) and drives the reaction to completion. As written, reactions 3, 4, and 5 would only require catalytic amounts of I^{-}to produce I; this was verified experimentally (see Experimental Section for details). The equilibria represented by eq 6 and 7 serve to explain the buildup and subsequent decay of II as the overall reaction for formation of I goes to completion. The presence of I^{-}and THF should favor consumption of II and formation of I. The cleavage of M-H-M units by soft Lewis bases such as $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}$ and $\mathrm{CH}_{3} \mathrm{CN}$ has been observed before, ${ }^{23 a, b}$ and Hayter has postulated equilibrium 7 to explain why, when equimolar mixtures of $\mathrm{HM}_{2}(\mathrm{CO})_{10}-(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W})$ are refluxed, statistical mixtures of the mixed metal compounds are produced. ${ }^{14}$ When I^{-}is absent, cleavage at room temperature by THF is not as facile and the predominant product is II. The optimum role of THF in this scheme is to complex BH_{3} and to retain it for equilibrium 6 . With solvents such as diethyl ether, which are weaker Lewis bases, the volatile BH_{3} is lost (as $\mathrm{B}_{2} \mathrm{H}_{6}$) and the equilibrium is driven toward II.

Support for the form of equilibria 6 and 7 was derived from several additional chemical experiments (see Experimental Section). It can be shown that II is readily cleaved by I^{-}(eq 8).

$$
\begin{align*}
\mathrm{HMO}_{2}(\mathrm{CO})_{10^{-}} & +\mathrm{I}^{-}(\text {molar }) \\
& \mathrm{Mo}(\mathrm{CO})_{5} \mathrm{I}^{-}+\left[\mathrm{HMo}(\mathrm{CO})_{5}^{-}\right] \tag{8}
\end{align*}
$$

The iodide ion would be expected to cleave the dimer to form equal amounts of $\mathrm{HMo}(\mathrm{CO})_{5}^{-}$and $\mathrm{Mo}(\mathrm{CO})_{5} \mathrm{I}^{-}$. Although the iodide complex is observed, the $\mathrm{HMo}(\mathrm{CO})_{5}{ }^{-}$is apparently so unstable that in the absence of BH_{3}, it decomposes to cluster complexes of higher molecular weight. This assumption is supported by the fact that previous attempts to synthesize $\mathrm{HMo}(\mathrm{CO})_{5}{ }^{-}$using methods identical with those for $\mathrm{HCr}(\mathrm{CO})_{5}^{-}$and $\mathrm{HW}(\mathrm{CO})_{5}{ }^{-}$produced only $\mathrm{H} .{ }^{23 \mathrm{c}, \mathrm{d}}$ It was next shown that BH_{3} is essential to produce I from II. Reaction 9 reveals that $\mathrm{BH}_{4}{ }^{-}$will not serve for this purpose (see Experimental Section).

$$
\begin{align*}
\mathrm{HMo}_{2}(\mathrm{CO})_{10^{-}} & +\mathrm{BH}_{4}^{-}+\mathrm{I}^{-}(\text {catalytic }) \\
& \rightarrow \mathrm{MoCO})_{5} \mathrm{I}^{-}(\text {trace })+\mathrm{I}(\text { trace })+? \tag{9}
\end{align*}
$$

However, when a source of BH_{3} is introduced in stoichiometric quantities, the equilibria of eq 6 and 7 are set up and I is produced from II.

$$
\begin{align*}
\mathrm{HMo}_{2}(\mathrm{CO})_{10^{-}}+ & \mathrm{I}^{-} \\
& \rightarrow \mathrm{BH}_{3} \cdot \mathrm{THF}(\text { molar }) \tag{10}\\
& \mathrm{Mo}(\mathrm{CO})_{4} \mathrm{BH}_{4}^{-}+\mathrm{Mo}(\mathrm{CO})_{5} \mathrm{I}^{-}
\end{align*}
$$

Interestingly, when a large excess of BH_{3}.THF is used, the air-stable $\mathrm{Mo}(\mathrm{CO})_{4} \mathrm{~B}_{3} \mathrm{H}_{8}{ }^{-10}$ complex is produced.

$$
\begin{align*}
& \mathrm{HMo}_{2}(\mathrm{CO})_{10^{-}}+\mathrm{I}^{-}+\mathrm{BH}_{3} \cdot \mathrm{THF} \text { (excess) } \\
& \rightarrow \mathrm{Mo}(\mathrm{CO})_{4} \mathrm{~B}_{3} \mathrm{H}_{8}^{-} \tag{11}
\end{align*}
$$

Although unexpected, this result is understandable since the

Table II. Final Atomic Parameters for [PPN][Mo(CO) $\left.{ }_{4} \mathrm{BH}_{4}\right]^{a}$

Atom	x	y	z	Atom	x	y	z
Mo	0.21374 (6)	0.39312 (10)	0.07375 (9)	C(29)	-0.0059 (8)	0.5104 (13)	-0.7133(12)
P(1)	0.18621 (15)	0.86684 (30)	-0.38790 (20)	C(30)	-0.0344 (10)	0.6021 (17)	-0.6472 (16)
P (2)	0.36220 (15)	0.86982 (30)	-0.34455 (20)	C(31)	0.0275 (9)	0.7106 (14)	-0.5393 (13)
N	0.2772 (4)	0.8304 (8)	-0.3425 (7)	C(32)	0.1766 (6)	1.0311 (9)	-0.4371 (9)
B	0.2665 (11)	0.4707 (19)	-0.0574 (17)	C(33)	0.1434 (7)	1.0214 (11)	-0.5614 (10)
H(1)	0.300 (4)	0.512 (7)	0.047 (8)	C(34)	0.1457 (8)	1.1542 (14)	-0.5926 (12)
H(2)	0.206 (6)	0.368 (10)	-0.093 (8)	C(35)	0.1807 (7)	1.2749 (13)	-0.5077 (12)
H(3)	0.301 (6)	0.402 (10)	-0.077 (9)	C(36)	0.2130 (8)	1.2841 (13)	-0.3860 (11)
H(4)	0.252 (4)	0.557 (9)	-0.117 (7)	C(37)	0.2124 (6)	1.1577 (11)	-0.3503 (9)
C(10)	0.1213 (8)	0.2660 (12)	0.0694 (10)	C(38)	0.4132 (6)	0.7147 (9)	-0.3332 (8)
$\mathrm{O}(11)$	0.0682 (6)	0.1934 (10)	0.0714 (9)	C(39)	0.3854 (6)	0.6081 (10)	-0.3000 (9)
C(12)	0.2578 (6)	0.4312 (10)	0.2487 (10)	C(40)	0.4280 (8)	0.4919 (12)	-0.2817(11)
$\mathrm{O}(13)$	0.2857 (5)	0.4532 (8)	0.3554 (7)	C(41)	0.4953 (8)	0.4858 (13)	-0.3060 (12)
C(14)	0.1447 (8)	0.5490 (13)	0.0737 (11)	C(42)	0.5224 (8)	0.5929 (13)	-0.3413 (11)
$\mathrm{O}(15)$	0.1052 (6)	0.6342 (10)	0.0793 (9)	C(43)	0.4828 (7)	0.7109 (12)	-0.3588 (10)
$C(16)$	0.2789 (7)	0.2275 (11)	0.0749 (10)	C(44)	0.4323 (6)	1.0173 (9)	-0.2163 (8)
$\mathrm{O}(17)$	0.3142 (5)	0.1369 (8)	0.0744 (8)	C(45)	0.4100 (6)	1.0744 (10)	-0.1270 (9)
C(20)	0.1577 (5)	0.8881 (9)	-0.2664 (8)	C(46)	0.4623 (7)	1.1925 (12)	-0.0328 (11)
C(21)	0.1961 (6)	0.8203 (10)	-0.1772 (10)	C(47)	0.5372 (7)	1.2497 (12)	-0.0274 (11)
C(22)	0.1727 (7)	0.8263 (11)	-0.0806 (10)	C(48)	0.5612 (7)	1.1884 (12)	-0.1088 (11)
C(23)	0.1117 (7)	0.9017 (12)	-0.0811 (11)	C(49)	0.5086 (7)	1.0698 (12)	-0.2077 (10)
C(24)	0.0750 (7)	0.9707 (11)	-0.1646 (10)	C(50)	0.3527 (6)	0.9198 (10)	-0.4811 (8)
C(25)	0.0965 (7)	0.9677 (11)	-0.2615 (10)	C(51)	0.3328 (6)	0.8132 (11)	-0.5860 (10)
$\mathrm{C}(26)$	0.1097 (6)	0.7254 (9)	-0.5133 (8)	C(52)	0.3159 (8)	0.8618 (15)	-0.6950 (12)
C(27)	0.1351 (6)	0.6374 (9)	-0.5864 (9)	C(53)	0.3189 (8)	0.9864 (15)	-0.6946 (12)
C(28)	0.0766 (8)	0.5312 (12)	-0.6890 (11)	C(54)	0.3385 (8)	1.0915 (13)	-0.5980 (12)
				$\mathrm{C}(55)$	0.3566 (6)	1.0614 (11)	-0.4818(10)

Atom	$10^{4} \beta_{11}$	$10^{4} \beta_{22}$	Thermal Par $10^{4} \beta_{33}$	eters	$10^{4} \beta_{12}$	$10^{4} \beta_{13}$	$10^{4} \beta_{23}{ }^{\text {b }}$
Mo	48.0 (5)	142.7 (14)	116.2 (11)		27.1 (12)	81.0 (11)	59.2 (18)
P(1)	30 (1)	115 (4)	71 (3)		20 (3)	42 (3)	50 (5)
$P(2)$	28 (1)	114 (4)	70 (3)		20 (3)	39 (3)	52 (5)
N	20 (3)	138 (11)	95 (8)		31 (10)	42 (9)	93 (16)
B	87 (10)	193 (26)	171 (23)		102 (29)	158 (26)	144 (41)
C(10)	65 (7)	181 (19)	106 (13)		74 (19)	64 (16)	2 (25)
O(11)	80 (5)	260 (16)	257 (15)		-84 (15)	201 (16)	-37(24)
C(12)	38 (5)	150 (16)	102 (12)		48 (14)	46 (14)	42 (24)
$\mathrm{O}(13)$	64 (4)	234 (14)	120 (9)		68 (12)	75 (11)	53 (19)
C(14)	72 (7)	222 (21)	150 (15)		80 (20)	137 (18)	188 (30)
$\mathrm{O}(15)$	120 (7)	297 (18)	281 (15)		272 (18)	246 (18)	362 (28)
C(16)	66 (6)	130 (16)	104 (12)		14 (16)	93 (15)	56 (23)
O(17)	91 (5)	161 (12)	228 (13)		101 (13)	198 (14)	150 (21)
H(1)	3.7 (18)	C(26)	3.7 (2)	C(36)	6.4 (3)	C(46)	6.0 (2)
H(2)	6.6 (23)	C(27)	4.7 (2)	C(37)	4.8 (2)	C(47)	6.1 (2)
H(3)	6.6 (26)	C(28)	6.3 (3)	C(38)	4.6 (2)	C(48)	6.4 (3)
H(4)	5.1 (20)	C(29)	7.0 (3)	C(39)	6.6 (3)	C(49)	6.1 (2)
C(20)	3.5 (2)	C(30)	9.9 (4)	C(40)	6.9 (3)	C(50)	3.7 (2)
C(21)	4.9 (2)	C(31)	8.0 (3)	C(41)	7.0 (3)	C(51)	5.3 (2)
$\mathrm{C}(22)$	5.6 (2)	C(32)	4.1 (2)	C(42)	5.7 (2)	C(52)	7.8 (3)
C(23)	5.9 (2)	C(33)	5.5 (2)	C(43)	3.7 (2)	C(53)	7.4 (3)
C(24)	5.4 (2)	C(34)	7.1 (3)	C(44)	3.7 (2)	C(54)	6.8 (2)
C(25)	5.5 (2)	C(35)	6.3 (3)	C(45)	4.5 (2)	C(55)	5.4 (2)

${ }^{a}$ Numbering scheme for the PPN cation; $\mathrm{C}(20)-\mathrm{C}(25)=$ phenyl(1), $\mathrm{C}(26)-\mathrm{C}(31)=$ phenyl(2), etc. with phenyl(1)-phenyl(3) attached to $\mathrm{P}(1)$ and phenyl(4)-phenyl(6) attached to $\mathrm{P}(2){ }^{b}$ For the expression $\exp \left[-\left(\beta_{11} h^{2}+\beta_{22} k^{2}+\beta_{33} l^{2}+\beta_{12} h k+\beta_{13} h l+\beta_{23} k l\right)\right]$.
$\mathrm{B}_{3} \mathrm{H}_{8}-$ ligand is believed to have a greater degree of bidentate efficacy than the $\mathrm{BH}_{4}{ }^{-}$group. ${ }^{10}$
Molecular Structure of $[\mathrm{PPN}]\left[\mathrm{Mo}(\mathrm{CO})_{4} \mathbf{B H}_{4}\right]$. The final atomic parameters of [PPN$]\left[\mathrm{Mo}(\mathrm{CO})_{4} \mathrm{BH}_{4}\right]$ are given in Table II. Bond lengths and angles for the anion and cation are collected in Tables III and IV, respectively. Structure factor tables are available. ${ }^{24}$ The geometry of the anion is shown in Figures 1 and 2. The coordination about the central molybdenum atom is approximately octahedral, but two notable distortions occur in the equatorial plane: $\angle \mathrm{C}(\mathrm{eq})-\mathrm{Mo}-\mathrm{C}(\mathrm{eq})$ $=84.5(5)^{\circ}$ and $\angle \mathrm{H}_{\mathrm{b}}-\mathrm{Mo}-\mathrm{H}_{\mathrm{b}}=59(4)^{\circ}$. The tetrahydroborate ligand is coordinated to the molybdenum atom via two metal-hydrogen-boron bridges; this bidentate attachment is
often observed for covalent metal tetrahydroborates, ${ }^{7}$ although for $\mathrm{Zr}, \mathrm{Hf}, \mathrm{U}$, and a few other elements triple bridge attachment is also observed. ${ }^{7}$ Bond angles and distances within the BH_{4} group are normal; the average $\mathrm{B}-\mathrm{H}$ distance of 1.15 (10) \AA is comparable to the neutron-diffraction determined $\mathrm{B}-\mathrm{H}$ distances of 1.26 (2) \AA in $\mathrm{KBH}_{4},{ }^{25 \mathrm{a}} 1.25$ (2) \AA in $\mathrm{Hf}\left(\mathrm{BH}_{4}\right)_{4}$ (average of $\mathrm{B}-\mathrm{H}_{\mathrm{b}}$ and $\mathrm{B}-\mathrm{H}_{\mathrm{t}}$ in this tridentate structure), ${ }^{25 \mathrm{~b}}$ 1.24 (4) \AA in $\mathrm{U}\left(\mathrm{BH}_{4}\right)_{4}$ (average of $\mathrm{B}-\mathrm{H}_{\mathrm{b}}$ and $\mathrm{B}-\mathrm{H}_{\mathrm{t}}$ in the isolated tridentate $\mathrm{BH}_{4}{ }^{-}$unit), ${ }^{25 \mathrm{c}}$ and 1.192 (16) $\left(\mathrm{B}-\mathrm{H}_{\mathrm{t}}\right)$, 1.255 (9), 1.208 (13) $\AA\left(B-\mathrm{H}_{b}\right)$ in $\left(\mathrm{CH}_{3} \mathrm{C}_{5} \mathrm{H}_{4}\right)_{2} \mathrm{Hf}\left(\mathrm{BH}_{4}\right)_{2} .{ }^{25 \mathrm{~d}}$ Although they show considerable variation, the H-B-H angles in I are approximately tetrahedral.

The geometry of the PPN^{+}cation is similar to that found

Table III. Bond Lengths and Angles for the $\mathrm{Mo}(\mathrm{CO})_{4}\left(\mathrm{BH}_{4}\right)^{-}$ Anion

Bond Lengths			
Mo-B	2.413 (20)	$\mathrm{C}(10)-\mathrm{O}(11)$	1.145 (18)
Mo-H(1) (b)	2.04 (8)	$\mathrm{C}(12)-\mathrm{O}(13)$	1.168 (13)
Mo-H(2) (b)	1.99 (9)	$\mathrm{C}(14)-\mathrm{O}(15)$	1.136 (18)
Mo... H (3) (t)	2.92 (11)	$\mathrm{C}(16)-\mathrm{O}(17)$	1.120 (15)
Mo...H(4) (t)	3.30 (12)		
Mo-C(10) (eq)	1.954 (14)		
Mo..O(11) (eq)	3.099 (11)	B-H(1) (b)	1.14 (9)
Mo-C(12) (eq)	1.917 (11)	B-H(2) (b)	1.26 (11)
Mo..O(13) (eq)	3.085 (8)	B-H(3) (t)	1.01 (11)
Mo-C(14) (ax)	2.021 (14)	B-H(4) (t)	1.20 (9)
Mo…O(15) (ax)	3.155 (11)		
Mo-C(16) (ax)	2.051 (12)		
Mo...O(17) (ax)	3.171 (9)		
Bond Angles			
$\mathrm{H}(1)-\mathrm{Mo}-\mathrm{H}(2)$	59 (4)	$\mathrm{O}(13)-\mathrm{Mo}-\mathrm{O}(15)$	88.8 (2)
C(10)-Mo-C(12)	84.5 (5)	$\mathrm{O}(13)-\mathrm{Mo}-\mathrm{O}(17)$	89.4 (2)
$\mathrm{C}(10)-\mathrm{Mo}-\mathrm{C}(14)$	86.8 (6)	$\mathrm{O}(15)-\mathrm{Mo}-\mathrm{O}(17)$	175.6 (3)
$\mathrm{C}(10)-\mathrm{Mo}-\mathrm{C}(16)$	89.9 (5)	$\mathrm{H}(1)-\mathrm{B}-\mathrm{H}(2)$	112 (6)
$\mathrm{C}(12)-\mathrm{Mo}-\mathrm{C}(14)$	89.6 (5)	$\mathrm{H}(1)-\mathrm{B}-\mathrm{H}(3)$	105 (7)
$\mathrm{C}(12)-\mathrm{Mo}-\mathrm{C}(16)$	89.6 (4)	$\mathrm{H}(1)-\mathrm{B}-\mathrm{H}(4)$	118 (5)
$\mathrm{C}(14)-\mathrm{Mo}-\mathrm{C}(16)$	176.7 (6)	$\mathrm{H}(2)-\mathrm{B}-\mathrm{H}(3)$	90 (8)
$\mathrm{O}(11)-\mathrm{Mo}-\mathrm{O}(13)$	83.8 (3)	$\mathrm{H}(2)-\mathrm{B}-\mathrm{H}(4)$	115 (6)
$\mathrm{O}(11)-\mathrm{Mo}-\mathrm{O}(15)$	85.6 (3)	$\mathrm{H}(3)-\mathrm{B}-\mathrm{H}(4)$	113 (7)
$\mathrm{O}(11)-\mathrm{Mo}-\mathrm{O}(17)$	90.2 (3)	Mo-H(1)-B	96 (5)
$\mathrm{O}(11)-\mathrm{Mo}-\mathrm{O}(17)$	90.2 (3)	Mo-H(1)-B	96 (5)
		Mo-H(2)-B	93 (5)

in the majority of PPN^{+}structure determinations. Although there are two known cases of a linear P-N-P framework, ${ }^{26}$ the majority exhibit angles similar to the $141.1(5)^{\circ}$ angle found in this work.

The interaction between the $\mathrm{Mo}(\mathrm{CO})_{4}$ fragment and the $\mathrm{BH}_{4}{ }^{-}$ligand is the most interesting feature of this structure. The average $\mathrm{Mo}-\mathrm{H}_{\mathrm{b}}$ distance, 2.02 (8) \AA, is within two standard deviations of the range of numerous observed $\mathrm{M}-\mathrm{H}-\mathrm{M}$ ($\mathrm{M}=\mathrm{Mo}, \mathrm{W}$) $\mathrm{M}-\mathrm{H}$ distances, $1.85-1.89$ (1) $\AA{ }^{2}{ }^{27}$ The observed Mo-B distance, 2.41 (2) \AA, is identical with the average $\mathrm{Mo}-\mathrm{B}$ distance found in $\mathrm{B}_{10} \mathrm{H}_{10} \mathrm{COMoCO}(\mathrm{CO})_{3}{ }^{2-28}$ and slightly shorter than the sum of the estimated covalent radii, 2.44-2.49 $\AA .{ }^{29}$ The $\mathrm{Mo}-\mathrm{H}_{\mathrm{b}}$ and $\mathrm{Mo}-\mathrm{B}$ bond distances, therefore, suggest significant direct $\mathrm{Mo}-\mathrm{B}$ interaction as well as $\mathrm{Mo}-\mathrm{H}_{\mathrm{b}}$ bonding. Although the longer than usual $\mathrm{Mo}-\mathrm{H}_{\mathrm{b}}$ distance may not be significant, at least the observed trend
toward greater M-H distances for bridging hydrogen atoms seems correct ($\mathrm{Mo}-\mathrm{H}$ terminal bonds have been estimated to be ca. $1.77 \AA$). ${ }^{31}$

The $\mathrm{H}_{b}-\mathrm{Mo}-\mathrm{H}_{\mathrm{b}}$ angle is a result of the small "bite size" of the BH_{4}^{-}ligand. The $59(4)^{\circ}$ value can be compared with other bidentate metal tetrahydroborates, where $\mathrm{H}_{\mathrm{b}}-\mathrm{M}-\mathrm{H}_{\mathrm{b}}$ angles range from 60 to $76^{\circ}, 7 \mathrm{a}, 32$ The $\mathrm{H}_{\mathrm{b}}-\mathrm{M}-\mathrm{H}_{\mathrm{b}}$ angle in $\mathrm{Cr}(\mathrm{CO})_{4} \mathrm{~B}_{3} \mathrm{H}_{8}{ }^{-}$is $101(4)^{\circ},{ }^{33}$ which is considerably closer to the ideal octahedral value of 90° than is found in Mo$(\mathrm{CO})_{4} \mathrm{BH}_{4}{ }^{-}$. Indeed, the thermal instability of $\mathrm{Mo}(\mathrm{CO})_{4} \mathrm{BH}_{4}^{-}$ in comparison to $\mathrm{Mo}(\mathrm{CO})_{4} \mathrm{~B}_{3} \mathrm{H}_{8}{ }^{-}$may reflect this contracted bite angle and accompanying poorer ligand-metal orbital overlap. ${ }^{10}$

Within the $\mathrm{Mo}(\mathrm{CO})_{4}$ fragment the average $\mathrm{Mo}-\mathrm{C}(\mathrm{eq})$ distance of 1.94 (1) \AA is $0.1 \AA$ shorter than the average Mo$\mathrm{C}(\mathrm{ax})$ distance, 2.04 (1) $\AA \AA$, as is expected when equatorial carbonyl ligands are trans to a σ bonding ligand such as M, H, or $\mathrm{BH}_{4}{ }^{34}$ Most angles within the fragment are consistent with the octahedral coordination, but the $\mathrm{C}(\mathrm{eq})-\mathrm{Mo}-\mathrm{C}(\mathrm{eq})$ angle of $84.5(5)^{\circ}$ is unexpectedly small. Normally, we would expect a deviation in the direction of a larger angle because of steric factors. We can offer no explanation for the significantly small $\mathrm{C}(\mathrm{eq})-\mathrm{Mo}-\mathrm{C}(\mathrm{eq})$ angle at this time, although it is interesting to note that the deviation serves to keep the $\mathrm{H}_{\mathrm{b}}-\mathrm{Mo}-\mathrm{C}(\mathrm{eq})$ angles close to 180°.

Molecular Dynamics. NMR Studies. In general, the ${ }^{1} \mathrm{H}$ NMR spectra of covalent metal tetrahydroborates exhibit a single BH_{4} resonance at room temperature. ${ }^{7}$ This situation obtains regardless of whether the ground state metal tetrahydroborate coordination geometry is bidentate or tridentate, and is due to exceedingly rapid intramolecular interchange of bridge and terminal hydrogen atoms. ${ }^{7 a}$ At present, only limited kinetic data are available for the dynamic process in tridentate tetrahydroborates, viz., paramagnetic $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3} \mathrm{UBH}_{4}\left(\Delta G^{\ddagger} \approx 5.0 \pm 0.6 \mathrm{kcal} / \mathrm{mol}\right)^{9 \mathrm{~b}}$ and $\mathrm{M}\left(\mathrm{BH}_{4}\right)_{4}$, $\mathrm{M}=\mathrm{Zr}, \mathrm{Hf}$, in the solid state $\left(\Delta G^{\ddagger} \approx 8.4 \mathrm{kcal} / \mathrm{mol}\right) .{ }^{35}$ Likewise, in the bidentate series, only the highly covalent complex $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{VBH}_{4}$ has so far proven amenable to barrier height determination ($\Delta G_{\mathrm{c}}{ }^{\mp} \approx 7.6 \pm 0.3 \mathrm{kcal} / \mathrm{mol}$), ${ }^{9 a}$ though several complexes of the type $\mathrm{L}_{2} \mathrm{M}\left(\mathrm{H}_{2}\right) \mathrm{BH}_{4}, \mathrm{~L}=$ a bulky phosphine, $\mathrm{M}=\mathrm{Rh}$, Ir , were noted to have what appears to be comparable or even greater energetic barriers to hydrogen interchange ${ }^{36}$ (no quantitative rate data were reported). It is not at present clear what effect the ground state $\mathrm{BH}_{4}{ }^{-}$ligation geometry, the metal, and the nature of the other ligands in the complex have

Table IV, Bond Lengths and Angles for the PPN Cation ${ }^{\text {a }}$

	$\mathrm{N}-\mathrm{P}(1)$	1.565 (8)	$\begin{aligned} & \mathrm{P}(2)-\mathrm{C}(38) \\ & \mathrm{P}(2)-\mathrm{C}(44) \\ & \mathrm{P}(2)-\mathrm{C}(50) \end{aligned}$	$\begin{aligned} & 1.816(10) \\ & 1.805(9) \\ & 1.805(10) \end{aligned}$		
	$\mathrm{N}-\mathrm{P}$ (2)	1.545 (9)				
	$\mathrm{P}(1)-\mathrm{C}(20)$	1.797 (10)				
	$\mathrm{P}(1)-\mathrm{C}(26)$	1.792 (10)				
	$\mathrm{P}(1)-\mathrm{C}(32)$	1.815 (9)	$\mathrm{P}(1)-\mathrm{N}$	141.8 (6)		
	Phenyl(1)	Phenyl(2)	Phenyl(3)	Phenyl(4)	Phenyl(5)	Phenyl(6)
1-2	1.342 (14)	1.396 (16)	1.381 (15)	1.326 (14)	1.366 (15)	1.382 (14)
2-3	1.426 (17)	1.396 (16)	1.421 (18)	1.409 (16)	1.385 (16)	1.396 (18)
3-4	1.352 (18)	1.356 (22)	1.306 (19)	1.357 (22)	1.373 (19)	1.303 (21)
4-5	1.312 (16)	1.364 (23)	1.352 (18)	1.340 (19)	1.316 (18)	1.305 (19)
5-6	1.412 (17)	1.454 (23)	1.388 (17)	1.396 (18)	1.413 (17)	1.440 (17)
6-1	1.390 (16)	1.346 (21)	1.356 (14)	1.407 (18)	1.366 (18)	1.373 (15)
a	121.5 (10)	120.2 (10)	118.3 (7)	121.1 (10)	120.1 (9)	121.6 (9)
b	119.7 (10)	120.8 (11)	115.2 (10)	120.8 (11)	119.7 (11)	118.6 (11)
c	117.7 (10)	119.8 (12)	121.2 (12)	119.1 (12)	120.2 (12)	119.0 (12)
d	123.0 (12)	120.4 (14)	123.4 (13)	119.8 (13)	119.9 (12)	124.9 (13)
e	121.0 (12)	118.3 (16)	117.8 (11)	123.0 (14)	121.3 (13)	119.7 (12)
f	117.0 (10)	119.6 (14)	119.7 (10)	116.1 (11)	118.6 (11)	116.0 (10)
g	117.1 (8)	119.1 (9)	122.5 (9)	120.0 (9)	120.4 (8)	118.8 (8)

[^0]

Figure 1. The molecular structure of the $\left[\mathrm{Mo}(\mathrm{CO})_{4} \mathrm{BH}_{4}\right]^{-}$anion.
on tetrahydroborate molecular dynamics. Even less is known about the mechanism(s). To provide further information on these questions, dynamic NMR studies of $\mathrm{Mo}(\mathrm{CO})_{4} \mathrm{BH}_{4}{ }^{-}$ were undertaken.

The processes depicted in eq 12-14 have been suggested

(none have been identified) as possible pathways for bridgeterminal hydrogen permutation in bidentate and tridentate tetrahydroborate complexes. ${ }^{7 a, 37,38}$ These involve rapid oscillation between structures with different formal metal coordination numbers. As written these reactions are not strictly concerted ${ }^{39}$ in that bond breaking and bond making are not simultaneous events along the reaction coordinate. It is also possible to devise a concerted fluxional process for metal tetrahydroborates with bidentate (or tridentate ${ }^{40}$) ground state geometries by twisting the ligand about one of the $\mathrm{B}-\mathrm{H}_{\mathrm{b}}$ bonds (darkened) as illustrated in eq $15 .{ }^{7 \text { a }}$ The parameters θ and r could presumably have some variability since the transition state is not necessarily a "relaxed" tridentate structure. Though the above reactions may appear superficially to be different in character, it is necessary to determine rigorously if there are modes of tetrahydroborate nuclear permutation (the dynamic

Figure 2. A view of the equatorial plane of $\left[\mathrm{Mo}(\mathrm{CO})_{4} \mathrm{BH}_{4}\right]^{-}$.

NMR observable) which will actually be differentiable in an NMR experiment, and then to see if these can be identified with plausible (e.g., 12-15) reaction mechanisms. The first step is to analytically partition the enumerated set of nuclear permutations into equivalency classes. ${ }^{7 a, 42}$ The result relevant to $\mathrm{Mo}(\mathrm{CO})_{4} \mathrm{BH}_{4}{ }^{-}$is shown below. Besides the identity operation,

reaction A
(13)(2)(4)

$$
\frac{\text { reaction } B}{(13)(24)}
$$

two reactions (and their equivalents) ${ }^{43}$ are, in theory, differentiable by NMR. These permutations differ in whether one bridge and one terminal hydrogen or both bridge and both terminal hydrogens are interchanged each time the reaction coordinate is traversed. This interesting multiplicity in pathways has not been previously recognized for tetrahydroborates. ${ }^{44,45}$ It can be seen that the rearrangements depicted in eq 12,13 , and 15 can all be identified with a single permutation: the one bridge H atom for one terminal H atom interchange process, i.e., reaction A. Differentiable reaction B, which involves synchronous permutation of both bridge hydrogen atoms with both terminal hydrogen atoms during each traversal of the reaction coordinate, is mechanistically not represented by eq 12,13 , or 15 but by a different kind of process, e.g., that depicted in eq 16 . This rearrangement is remi-

niscent of the Berry pseudorotation. ${ }^{44}$ It should be noted that reaction 16 involves major changes in the coordination environment about the metal, and an intermediate or transition state with $C_{4 v}$ local symmetry at boron. Though there is some precedent for five-coordinate boron (e.g., BH_{5}), ${ }^{46}$ metal-boron bonds, ${ }^{47}$ and substantial M-B interaction in metal tetrahy-

Figure 3. Variable temperature ${ }^{1} \mathrm{H}\left\{{ }^{11} \mathrm{~B}\right\}$ spectra of [PPN$]\left[\mathrm{Mo}(\mathrm{CO})_{4} \mathrm{BH}_{4}\right.$] at 60 MHz . The symbol S denotes traces of THF- d_{7} in the solveni. THF-d ${ }^{\text {. }}$
droborate bonding, ${ }^{48}$ eq 16 should be regarded as highly speculative.
[PPN] $\left[\mathrm{Mo}(\mathrm{CO})_{4} \mathrm{BH}_{4}\right]$ provides an unusual opportunity to probe some of the energetic and mechanistic uncertainties discussed above because the structure is coordinatively rather saturated (quasi-octahedral $\mathrm{L}_{2} \mathrm{Mo}(\mathrm{CO})_{4}$) and because metal carbonyl complexes in this region of the periodic table usually conform to the 18 -electron rule. ${ }^{49}$ Furthermore, ${ }^{13} \mathrm{C}$ NMR of the carbonyl groups should provide a means of determining whether stereochemical changes in the metal coordination sphere occur in concert with $\mathrm{H}_{\mathrm{t}}-\mathrm{H}_{\mathrm{b}}$ exchange. Five- and seven-coordinate metal polyhedra of mono- and tridentate intermediates are likely to be stereochemically nonrigid. ${ }^{43 \mathrm{~b}, 50}$ Likewise, the manifestations of a boron-bound $C_{4 v}$ intermediate (eq 16) or a $\pi / 4$ rotation of the $\mathrm{B}\left(\mathrm{H}_{\mathrm{b}}\right)_{2}$ bonding plane about the $\mathrm{B}-\mathrm{Mo} \mathrm{axis}^{51}$ could be detected.

Figure 3 presents variable temperature ${ }^{1} \mathrm{H}$ NMR spectra of I with decoupling of ${ }^{11} \mathrm{~B}$. At room temperature, a singlet centered at $\delta-2.7$ is observed; without ${ }^{11} \mathrm{~B}$ irradiation, a

Figure 4. Room temperature $20-\mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of $[\mathrm{PPN}]\left[\mathrm{Mo}(\mathrm{CO})_{4} \mathrm{BH}_{4}\right]$ in the carbonyl region. A trace of $\mathrm{Mo}(\mathrm{CO})_{5} 1^{-}$is denoted by X.
quartet ($J_{11_{\mathrm{B}-\mathrm{H}}} \approx 80 \mathrm{~Hz}$) severely broadened by ${ }^{11} \mathrm{~B}$ quadrupolar relaxation ${ }^{7 \mathrm{a}}$ is seen. The singlet integrates in a ratio of ca. 4:30 with respect to the PPN aromatic resonances. Upon lowering the temperature, the BH_{4} singlet collapses and at lower temperatures resonances at $\delta-9.8$ and 4.3 grow in. These signals are in relative intensities of $2: 2$. The higher field peak is assigned to the H_{b} protons, with the resonance position attributable to diamagnetic and paramagnetic shielding ${ }^{52}$ by the proximate transition metal. The low-field resonance is assigned to the H_{t} protons. The field position of H_{t} is comparable to values found for analogous terminal protons in several other bidentate transition metal tetrahydroborates ($\delta \approx$ $3.9-7.8^{9 \mathrm{a} .36}$) and in diborane ($\delta \approx 4.0^{53}$). No spin-spin coupling could be resolved in what is expected to be an $\mathrm{AA}^{\prime} \mathrm{XX}^{\prime}$ pattern of multiplets (a maximum of ten lines is expected per multiplet ${ }^{54}$). This lack of resolution is attributable to the small expected magnitudes of the coupling constants, ${ }^{55}$ low temperature viscosity line broadening, and possible incomplete decoupling (rf and/or correlation time ${ }^{7 a}$) of ${ }^{11} \mathrm{~B}$. Taking the spectral coalescence point to be $-42 \pm 3^{\circ} \mathrm{C}$ and employing the modified Bloch equations ${ }^{56}$ yields a free energy of activation ($\Delta G_{\mathrm{c}}{ }^{\ddagger}$) for bridge-terminal hydrogen exchange in I of $10.0 \pm$ $0.2 \mathrm{kcal} / \mathrm{mol}$.

For carbon-13 studies of the carbonyl ligands it was necessary to synthesize a derivative ca. 15% enriched in ${ }^{13} \mathrm{CO}$ (see Experimental Section). The room temperature spectrum of this derivative in THF- d_{8} exhibits two carbonyl resonances ${ }^{57}$ in an intensity ratio of $1: 1$ at $\delta 209.8$ and 226.2 ppm vs. $\mathrm{Me}_{4} \mathrm{Si}$ (Figure 4). The field positions are similar to analogous $\mathrm{Mo}(\mathrm{CO})_{4}$ compounds. ${ }^{57.58}$ The line widths of the ${ }^{13} \mathrm{CO}$ resonances in I are invariant to broad band ${ }^{1} \mathrm{H}$ decoupling, indicating rather small $\mathrm{C}-\mathrm{H}$ coupling constants. Based upon data from analogous tetracarbonylmolybdenum systems, ${ }^{57.58}$ the low-field resonance is assigned to the CO groups in the plane of the H_{b} ligands. Variable temperature studies from -65 to $70^{\circ} \mathrm{C}$ produced a surprising result: the $\mathrm{Mo}(\mathrm{CO})_{4}$ portion of the molecule is completely rigid over this temperature range. That is, bridge-terminal hydrogen interchange within the tetrahydroborate ligand does not permute the environments of the two kinds of carbonyl ligands. Assuming that the minimum chemical exchange line broadening which could be discerned at $70^{\circ} \mathrm{C}$ (above this temperature thermal decomposition becomes rapid) is 3 Hz , then the free energy of activation for axial-equatorial carbonyl interchange at $70^{\circ} \mathrm{C}$ is $\gtrsim 18.6$ $\mathrm{kcal} / \mathrm{mol}$, which is at least $9 \mathrm{kcal} / \mathrm{mol}$ greater than the $\Delta G_{\mathrm{c}}{ }^{\ddagger}$ for the fluxional process in the tetrahydroborate moiety. It is of interest to note that nonrigidity has only been observed in

D
one cis $-\mathrm{L}_{2} \mathrm{Mo}(\mathrm{CO})_{4}$ system to date: that where $\mathrm{L}_{2}=$ substituted diazabutadienes, $\mathrm{D},{ }^{58}$ Here $\Delta G_{\mathrm{c}}{ }^{\ddagger} \approx 10-13 \mathrm{kcal} / \mathrm{mol}$.

Conclusions

This work demonstrates that metal tetrahydroborates of the middle transition elements are accessible with carbonyl groups as the only other ligands. As noted in the synthetic and mechanistic discussion, the formation of such products, as opposed to metal hydrides, depends critically upon the reaction conditions. Our results indicate that it may be possible to synthesize carbonyl tetrahydroborates of a number of other metals under the proper conditions of solvent and leaving group; this hypothesis is under investigation.

Since zerovalent molybdenum carbonyls conform rather closely to the noble gas formalism, ${ }^{49} \mathrm{Mo}(\mathrm{CO})_{4} \mathrm{BH}_{4}{ }^{-}$provides an opportunity to more accurately assess the number of electrons formally donated by a bidentate $\mathrm{BH}_{4}{ }^{-}$ligand. From simple electron counting and analogy to the η^{3}-allyl ligand in a number of early transition metal compounds, it was previously suggested ${ }^{7 a}$ that the bidentate $\mathrm{BH}_{4}{ }^{-}$ligand was a four-electron donor. Electron counting in I reveals that tetrahydroborate indeed acts as a formal four-electron donor. As has been shown elsewhere, ${ }^{\text {a }}$ the reasons for the similarity in ligation patterns of BH_{4}^{-}and η^{3}-allyl can be understood in terms of ligand bite angle as well as molecular orbital symmetries and energies. This similarity and its manifestation in the $\mathrm{Mo}(\mathrm{CO})_{4}$ fragment is especially apparent when the structure of $\mathrm{Mo}(\mathrm{CO})_{4} \mathrm{BH}_{4}{ }^{-}$is compared to that of the allyl, $\mathrm{Mo}(\mathrm{CO})_{4}\left[\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right],{ }^{59}$ as shown below.

Two features revealed by the dynamic NMR studies of bridge-terminal hydrogen exchange in $\mathrm{Mo}(\mathrm{CO})_{4} \mathrm{BH}_{4}{ }^{-}$are noteworthy. First, the barrier to hydrogen interchange ($\Delta G_{\mathrm{c}}{ }^{\ddagger}$ $\approx 10 \mathrm{kcal} / \mathrm{mol}$), though high for a covalent metal tetrahydroborate, ${ }^{72}$ seems to be qualitatively rather low for a tetracarbonylmolybdenum complex undergoing formal $18 \rightleftharpoons 16$ electron configurational oscillations ${ }^{49,60}$ as in a bidentate \rightleftharpoons monodentate equilibrium. ${ }^{61}$ These energetic observations coupled with the finding that the $\mathrm{Mo}(\mathrm{CO})_{4}$ coordination polyhedron is immobile on the NMR time scale place restrictions on the range of operational $\mathrm{BH}_{4}{ }^{-}$rearrangement mechanisms and the lifetime of plausible nonrigid intermediates. For example, the intermediate of eq 12 or eq 13 must be sufficiently short lived that carbonyl positional scrambling ${ }^{43 b .50}$ does not occur about the metal before re-formation of the ground state bridge structure. Especially in the case of a five-coordinate, 16 -electron $\mathrm{LMo}(\mathrm{CO})_{4}$ moiety, this is likely to be a stringent restriction. ${ }^{43 b, 50,63}$ There are in principle two differentiable rearrangement modes for bidentate tetrahydroborates, viz., reactions $\mathrm{A}((12)(2)(4))$ and $\mathrm{B}((13)(24))$. Though we are not
as yet able to rule out all mechanistic variants of the latter permutation, it is now possible to exclude a process such as eq 16 where either there is a $C_{4 v}$ intermediate with free rotation about the Mo-B bond or in which the metal coordination polyhedron "follows" by deformation of OC-M-CO angles (essentially pseudorotation) the bridge-terminal hydrogen interchange. ${ }^{64}$ Theoretical studies of this interesting problem are also in progress. ${ }^{65}$

Acknowledgments. This research was supported by grants from the National Science Foundation to R.B. (CHE7401541 A 02) and T.J.M. (CHE74-10341A02), the donors of the Petroleum Research Fund, administered by the American Chemical Society (to R.B. and S.W.K.), and the Research Corporation (to S.W.K.). Computer time for the x-ray diffraction analysis was provided by the University of Southern California Computer Center, We thank Professor Roald Hoffmann for stimulating discussions.

Supplementary Material Available: A listing of structure factor amplitudes for the x -ray data set (Table V) (14 pages). Ordering information is given on any current masthead page.

References and Notes

(1) (a) Smith College; (b) New College, Sarasota, Fla.; (c) University of Southern California; (d) Northwestern University.
(2) Alfred P. Sloan Fellow, 1974-1976; NIH Research Career Development Awardee, 1975-1980
(3) Alfred P. Sloan Fellow, 1974-1976: Camille and Henry Dreyfus TeacherScholar, 1975-1980.
(4) (a) L. F. Fieser and M. Fieser, "Reagents for Organic Synthesis", Vol. 1-3, Wiley, New York, N.Y.. 1962; (b) H. C. Brown, "Boranes in Organic Synthesis". Cornell University Press, Ithaca, N.Y., 1972; (c) H. C. Brown, "Organic Synthesis Via Boranes"', Wiley, New York, N.Y., 1975.
(5) H. D. Kaesz, Chem. Br., 9, 344 (1973).
(6) M. Nakajima, H. Moriyama, A. Kobayashi, T. Saito, and Y. Sasaki, J. Chem. Soc., Chem. Commun., 80 (1975).
(7) (a) T. J. Marks and J. R. Kolb. Chem. Rev., 77, 263 (1977); (b) B. D. James and M. G. H. Wallbridge. Prog. Inorg. Chem., 11, 99 (1970).
(8) (a) M. L. H. Green, H. Munakata, and T. Saito. Chem. Commun., 1287 (1969): (b) B. D. James, R. K. Nanda, and M. G. H. Wallbridge, Inorg. Chem., 6, 1979 (1967).
(9) (a) T. J. Marks and W. J. Kennelly, J. Am. Chem. Soc., 97, 1439 (1975); (b) T. J. Marks and J. R. Kolb. ibid., 97, 27 (1975); (c) H. Beall and C. H. Bushweller, Chem. Rev., 73. 465 (1973), and references cited therein.
(10) For analogous $\mathrm{B}_{3} \mathrm{H}_{8}-$ complexes see F. Klanberg. E. L. Muetterties, and L. J. Guggenberger, Inorg. Chem., 7, 2272 (1968).
(11) A brief report of the thermally unstable $\mathrm{Mn}(\mathrm{CO})_{5} \mathrm{BH}_{4}$ has appeared: P. H. Bird and M. G. H. Wallbridge, Chem. Commun., 687 (1968).
(12) J. K. Ruff and W. J. Schlientz, Inorg. Synth., 15, 84 (1974).
(13) R. B. King, Organomet. Synth., 1, 172 (1965).
(14) R. G. Hayter. J. Am. Chem. Soc., 88, 4376 (1966).
(15) Data with $2 \theta \leq 40^{\circ}$ were collected twice. There were 4148 reflections in the first data set (2θ limit 45°) and 2962 reflections in the second data set (2θ limit 40°).
(16) P. W. R. Corfield, R. J. Doedens, and J. A. Ibers, Inorg. Chem., 6, 197 (1967).
(17) The major computations in this work were performed on the USC IBM 370-155 computer using CRYM, an amalgamated set of crystallographic programs developed by Dr. Richard Marsh's group at the California Institute of Technology.
(18) $R=\Sigma\left|F_{0}-\left|F_{c}\right|\right| \Sigma F_{0}: R_{w}=\left\{\Sigma w\left|F_{0}-\left|F_{c}\right|^{2 / \Sigma}{ }^{2} F_{0}{ }^{2}\right\}^{1 / 2}\right.$
(19) (a) T. J. Marks and G. W. Grynkewich, Inorg. Chem., 15, 1302 (1976); (b) T. J. Marks and L. A. Shimp. J. Am. Chem. Soc., 94, 1542 (1972); (c) T. J. Marks, W. J. Kennelly, J. R. Kolb, and L. A. Shimp, Inorg. Chem., 11, 2540 (1972).
(20) (a) P. S. Braterman, "Metal Carbonyl Spectra", Academic Press. New York. N. Y., 1975; (b) L. M. Haines and M. H. B. Stiddard, Adv. Inorg. Chem. Radiochem., 12, 53 (1969).
(21) H. D. Kaesz, W. Fellman, G. R. Wilkes, and L. F. Dahl, J. Am. Chem. Soc., 87, 2753 (1965).
(22) I. W. Stolz, H. Haas. and R. K. Sheline. J. Am. Chem. Soc., 87, 716 (1965).
(23) (a) R. W. Harrill and H. D. Kaesz, Inorg. Nucl. Chem. Lett., 2, 68 (1966); (b) A. S. Foust, W. A. G. Graham, and R. P. Stewart, J. Organomet. Chem., 54, 22 (1973): (c) H. Behrens and W. Klek, Z. Anorg. Allg. Chem., 292, 151 (1957): (d) H. Behrens and J. Vogl, Chem. Ber., 96, 2220 (1963).
(24) See paragraph at end of paper regarding supplementary material.
(25) (a) E. R. Peterson, Diss. Abstr., 25, 5588 (1965). (b) E. R. Bernstein, W. C. Hamilton, T. A. Keiderling, W. J. Kennelly, S. J. LaPlaca, S. J. Lippard, T. J. Marks, and J. J. Mayerle, unpublished results at Brookhaven National Laboratory. See ref 7a for more details. (c) E. R. Bernstein, W. C. Hamilton, T. A. Keiderling, S. J. LaPlaca, S. J. Lippard, and J. J. Mayerle, Inorg. Chem., 11, 3009 (1972). (d) P. L. Johnson, S. A. Cohen, T. J. Marks, and J. M. Williams, submitted for publication.
(26) R. D. Wilson and R. Bau, J. Am. Chem. Soc., 96, 7601 (1974).
(27) R. A. Love, H. B. Chin, T. F. Koetzle, S. W. KIrtley, B. R. Whittlesey, and R. Bau, J. Am. Chem. Soc., 98, 4491 (1976).
(28) P. A. Wegner, L. J. Guggenberger, and E. L. Muetterties, J. Am. Chem. Soc. 92, 3473 (1970).
(29) The covalent radius of boron is assumed to be $0.88 \AA$ (ref 30a) and the covalent radius of molybdenum estimated as $1.56 \AA$ from $\mathrm{MO}_{2}(\mathrm{CO})_{10}{ }^{2-}$ (ref 30 b) or $1.62 \AA$ from $\left(\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mo}(\mathrm{CO})_{3}\right)_{2}$ (ref 30 c).
(30) (a) L. Pauling. "The Nature of the Chemical Bond", Cornell University Press, lthaca. N.Y.. 1960, p 246; (b) L. B. Handy, J. K. Ruff, and L. F. Dahl, J. Am. Chem. Soc., 92, 7312 (1970): (c) F. C. Wilson and D. P. Shoemaker. J. Chem. Phys., 27, 809 (1957).
(31) J. P. Olsen, T. F. Koetzle, S. W. Kirtley, M. Andrews, D. L. Tipton, and R. Bau. J. Am. Chem. Soc., 96, 6621 (1974).
(32) (a) D. S. Marynick and W. N. Lipscomb, Inorg. Chem., 11, 820 (1972); (b) K. M. Melmed, D. Coucouvanis, and S. J. Lippard, ibid., 12, 232 (1973): (c) K. M. Melmed, T. Li, J. J. Mayerle, and S. J. Lippard, J. Am. Chem. Soc., 96, 69 (1974); (d) N. A. Bailey, P. H. Bird, and M. G. H. Wallbridge, Inorg. Chem., 7, 1575 (1968).
(33) L. J. Guggenberger, Inorg. Chem., 9, 367 (1970).
(34) B. A. Frenz and J. A. Ibers in "Transition Metal Hydrides', E. C. Muetterties, Ed., Marcel Dekker, New York, N.Y., 1971.
(35) I. Chuang, T. J. Marks, W. J. Kennelly, and J. R. Kolb, J. Am. Chem. Soc., In press.
(36) H. D. Empsall. E. Mentzer, and B. L. Shaw. J. Chem. Soc., Chem. Commun.. 861 (1975).
(37) R. E. Williams, J. Inorg. Nucl. Chem., 20, 198 (1961).
(38) R. K. Nanda and M. G. H. Wallbridge. Inorg. Chem., 3, 1978 (1964).
(39) (a) J. P. Lowe. J. Chem. Educ., 51, 785 (1974): (b) J. P. Jesson and E. L. Muetterties in ref 42a. Chapter 8.
(40) Bridge-terminal hydrogen interchange can be accomplished in a tridentate structure by the same type of twisting process about one of the $\mathrm{B}-\mathrm{H}_{\mathrm{b}}$ bonds.
(41) At their extremes, r and θ define either monodentate or tridentate configurations.
(42) (a) W. G. Klemperer in "Dynamic Nuclear Magnetic Resonance Spectroscopy", L. M. Jackman and F. A. Cotton, Ed., Academic Press. New York, N.Y., 1975, Chapter 2, and references cited therein: (b) W. G. Klemperer. J. Am. Chem. Soc., 94, 8360 (1972): (c) W. G. Klemperer, Inorg. Chem., 11, 2668 (1972): (d) W. G. Klemperer, J. Chem. Phys.. 56, 5478 (1972).
(43) For reactlon A these are (23)(1)(4), (24) (1) (3), (14)(2)(3), (124)(3), (142)(3), (134)(2), (143)(2), (123)(4), (132)(4), (243)(1), (234)(1), (1243), (1342), (1234), (1432). For reaction B these are (14) (23), (1324). (1423).
(44) (a) The situation is topologically analogous to nonrigid $C_{2 v} X P Y_{4}{ }^{44 \mathrm{~b}}$ and $\mathrm{SF}_{4}{ }^{44 \mathrm{c}}$ molecules. (b) M. Eisenhut. H. L. Mitchell, D. D. Traficante, R. J. Kaufman, J. M. Deutch, and G. M. Whitesides, J. Am. Chem. Soc., 96, 5385 (1974). (c) W. G. Klemperer, J. K. Krieger, M. D. McCreary, E. L. Muetterties, D. D. Traficante, and G. M. Whitesides, J. Am. Chem. Soc., 97, 7023 (1975).
(45) For the tridentate structure $\mathrm{M}\left(\mathrm{H}_{2}\right)\left(\mathrm{H}_{3}\right)\left(\mathrm{H}_{4}\right) \mathrm{B}\left(\mathrm{H}_{1}\right)$. only reaction (12)(3)(4) and its equivalents are feasible. ${ }^{7 a}$
(46) (a) J. B. Collins, P. v. R. Schleyer, J. S. Binkley, J. A. Pople, and L. Radom, J. Am. Chem. Soc., 98, 3436 (1976); (b) I. M. Pepperberg. T. A. Halgren, and W. N. Lipscomb, ibid., 98, 3442 (1976); (c) C. Hoheisel and W. Kutzelnigg, ibid., 97, 6970 (1975): (d) M. M. Kreevoy and J. E. C. Hutchins, ibid., 94, 6371 (1972): (e) G. A. Olah, P. W. Westerman, Y. K. Mo, and G. Klopman, ibid., 94, 7859 (1972).
(47) (a) G. Schmid, Angew, Chem., Int. Ed. Engl., 9, 819 (1970); (b) L. J. Todd. Adv. Organomet. Chem., 8, 87 (1970); (c) E. L. Muetterties and W. H. Knoth. "Polyhedral Boranes", Marcel Dekker, New York, N.Y., 1968.
(48) (a) D. S. Marynick and W. M. Lipscomb. J. Am. Chem. Soc., 95, 7244 (1973): (b) R. Ahlrichs. Chem. Phys. Lett., 19, 174 (1973): (c) D. S. Marynick. J. Chem. Phys., 64, 3080 (1976).
(49) (a) C. A. Tolman, Chem. Soc. Rev., 1, 337 (1972); (b) R. B. King. 'Transi-tion-Metal Organometallic Chemistry". Academic Press, New York, N.Y., 1969. Chapter I; (c) M. L. H. Green, "Organometallic Compounds", Vol.

2, Methuen, London, 1968, p 2.
(50) (a) E. L. Muetterties, MTP int. Rev. Sci.: Inorg. Chem., Ser. 1, 9, 39 (1972); (b) F. A. Cotton and G. Wilkinson, 'Advanced Inorganic Chemistry", 3rd ed, Interscience. New York, N.Y., 1972. Chapter 1: (c) F. A. Cotton, Proq. Inorg. Chem., 21, 1 (1976).
(51) This would be analogous to the observed coupling of axial-equatorial carbonyl interchange to olefin rotation in (olefin) $\mathrm{Fe}(\mathrm{CO})_{4}$ complexes: L . Kruczynski. J. L. Martin, and J. Takats. J. Am. Chem. Soc., 96, 4006 (1974): S. F. Wilson, N. J. Coville, J. R. Shapley, and J. A. Osborn, ibid., 96, 4038 (1974).
(52) (a) H. D. Kaesz and R. B. Saillant, Chem. Rev., 72, 231 (1972), and references cited therein; (b) A. D. Buckingham and P. J. Stephens, J. Chem. Soc., 2747 (1964); (c) A. D. Buckingham and P. J. Stephens, ibid., 4583 (1964).
(53) (a) T. C. Farrar, R. B. Johannesen, and T. D. Coyle, J. Chem. Phys., 49, 281 (1968). A value of $\delta 4.0 \pm 0.1$ was taken from Figure 1 of this paper, measuring from the sharp singlet assigned by these authors to ethane. (b) D. F. Gaines. R. Schaeffer, and F. Tebbe. J. Phys. Chem., 67, 1937 (1963).
(54) (a) R. J. Abraham, "The Analysis of High Resolution NMR Spectra", Elsevier, Amsterdam, 1971, Chapter 4; (b) E. O. Bishop. Annu. Rev. NMR Spectrosc., 1, 91 (1968).
 er.
(56) G. Binsch in ref 42a, Chapter 3.
(57) (a) L. J. Todd and J. R. Wilkinson, J. ORGANOMET/ Chem., 77, 1 (1974); (b) B. E. Mann, Adv. Organomet. Chem., 12, 135 (1974): (c) M. H. Chisholm and S. Godleski, Prog. Inorg. Chem., 20, 299 (1976).
(58) W. Majunke. D. Leibfritz. T. Mack, and H. tomDieck, Chem. Ber., 108, 3025 (1975).
(59) I. W. Bassi and R. Scordamaglia, J. Organomet. Chem., 51, 273 (1973).
(60) (a) F. A. Cotton and T. J. Marks, J. Am. Chem. Soc., 91, 1339 (1969). (b) For a discussion of analogous $\eta^{3} \rightleftarrows \eta^{1}$ equilibria in metal allyls, see K . Vrieze in ref 42a. Chapter 11.
(61) This qualitatively assumes that the ground state free energy content of $\mathrm{Mo}(\mathrm{CO})_{4} \mathrm{BH}_{4}{ }^{-}$is not unusually high for a $\mathrm{L}_{2} \mathrm{Mo}(\mathrm{CO})_{4}$ species.
(62) We cannot, of course, rule out the possibility that the molybdenum coordination sphere is nonrigid, but that every execution of bridge-terminal hydrogen interchange returns the metal fragment to a ground state in which the carbonyls occupy the same magnetic environments with respect to the hydrogen atoms.
(63) (a) M. A. Graham, M. Poliakoff, and J. J. Turner, J. Chem. Soc. A, 2939 (1971): (b) M. Poliakoff. Inorg. Chem., 15, 2892 (1976). and references cited therein; (c) M. A. Cohen and T. L. Brown, ibid., 15, 1417 (1976): (d) D. J. Darensbourg. A. Moradi-Araghi, and G. R. Dobson. J. Organometal. Chem., 116, $\mathrm{C} 17(1976)$. (e) For related rate information on $\mathrm{Fe}(\mathrm{CO})_{5}$ see ref $63 \mathrm{f}-\mathrm{h}$; (f) H. W. Spiess, R. Grosescu, and U. Haberlen, Chem. Phys., 6, 226 (1974); (g) H. Mahnke, R. K. Sheline, and H. W. Spiess, J. Chern. Phys., 61,55 (1974): (h) H. W. Spiess and H. Mahnke. Ber. Bunsenges. Phys. Chem., 76, 990 (1972).
(64) The ${ }^{13} \mathrm{C}$ results do not exclude a process in which rotation about the Mo-B bond in eq 16 fortuitously allows the H_{4} s to occupy the same coordination vertices vacated by the H_{b} 's thus preserving the distinction between $\mathrm{CO}(\mathrm{ax})$ and $\mathrm{CO}(\mathrm{eq})$.
(65) R. Hoffmann, private communication.
(66) NOTE ADDED IN PROOF. Infrared spectra of [PPN] [MO(CO) $\left.)_{4} \mathrm{BD}_{4}\right]$ confirm the assignments of the $\mathrm{MoH}_{2} \mathrm{BH}_{2}$ normal modes. A medium intensity $\nu \mathrm{B}-\mathrm{D}_{\mathrm{t}}$ absorption is observed at $1753 \mathrm{~cm}^{-1}$ (the other $\mu \mathrm{B}-\mathrm{D}_{\mathrm{t}}$ mode is apparently obscured by the intense $\nu \mathrm{C}-\mathrm{O}$ transitions), $\nu \mathrm{H} / \nu \mathrm{D} \approx 1.36$; a weak $\nu \mathrm{B}-\mathrm{D}_{\mathrm{b}}$ band is observed at $1422 \mathrm{~cm}^{-1}, \nu H / \nu \mathrm{D} \approx 1.35$; and a broad BD_{2} deformation occurs at $925 \mathrm{~cm}^{-1}, \nu \mathrm{H} / \nu \mathrm{D} \approx 1.24$; the bridge expansion mode is anticipated ${ }^{7 a}$ to occur in the region of a number of strong $\mathrm{PPN}^{+} \mathrm{ab}-$ sorptions and could not be unambiguously identified.

[^0]: ${ }^{a}$ See footnote a of Table II for PPN numbering scheme.

